3.3.67 \(\int \frac {\sqrt {d \csc (a+b x)}}{(c \sec (a+b x))^{3/2}} \, dx\) [267]

3.3.67.1 Optimal result
3.3.67.2 Mathematica [C] (verified)
3.3.67.3 Rubi [A] (verified)
3.3.67.4 Maple [A] (verified)
3.3.67.5 Fricas [F]
3.3.67.6 Sympy [F]
3.3.67.7 Maxima [F]
3.3.67.8 Giac [F]
3.3.67.9 Mupad [F(-1)]

3.3.67.1 Optimal result

Integrand size = 25, antiderivative size = 92 \[ \int \frac {\sqrt {d \csc (a+b x)}}{(c \sec (a+b x))^{3/2}} \, dx=\frac {d}{b c \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)}}+\frac {\sqrt {d \csc (a+b x)} \operatorname {EllipticF}\left (a-\frac {\pi }{4}+b x,2\right ) \sqrt {c \sec (a+b x)} \sqrt {\sin (2 a+2 b x)}}{2 b c^2} \]

output
d/b/c/(d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(1/2)-1/2*(sin(a+1/4*Pi+b*x)^2)^ 
(1/2)/sin(a+1/4*Pi+b*x)*EllipticF(cos(a+1/4*Pi+b*x),2^(1/2))*(d*csc(b*x+a) 
)^(1/2)*(c*sec(b*x+a))^(1/2)*sin(2*b*x+2*a)^(1/2)/b/c^2
 
3.3.67.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.12 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.91 \[ \int \frac {\sqrt {d \csc (a+b x)}}{(c \sec (a+b x))^{3/2}} \, dx=\frac {d \left (1+\cos (2 (a+b x))-\left (-\cot ^2(a+b x)\right )^{3/4} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {3}{2},\csc ^2(a+b x)\right )\right ) \sec ^3(a+b x)}{2 b \sqrt {d \csc (a+b x)} (c \sec (a+b x))^{3/2}} \]

input
Integrate[Sqrt[d*Csc[a + b*x]]/(c*Sec[a + b*x])^(3/2),x]
 
output
(d*(1 + Cos[2*(a + b*x)] - (-Cot[a + b*x]^2)^(3/4)*Hypergeometric2F1[1/2, 
3/4, 3/2, Csc[a + b*x]^2])*Sec[a + b*x]^3)/(2*b*Sqrt[d*Csc[a + b*x]]*(c*Se 
c[a + b*x])^(3/2))
 
3.3.67.3 Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 3108, 3042, 3110, 3042, 3053, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {d \csc (a+b x)}}{(c \sec (a+b x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {d \csc (a+b x)}}{(c \sec (a+b x))^{3/2}}dx\)

\(\Big \downarrow \) 3108

\(\displaystyle \frac {\int \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)}dx}{2 c^2}+\frac {d}{b c \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sqrt {d \csc (a+b x)} \sqrt {c \sec (a+b x)}dx}{2 c^2}+\frac {d}{b c \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 3110

\(\displaystyle \frac {\sqrt {c \cos (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {d \sin (a+b x)} \sqrt {d \csc (a+b x)} \int \frac {1}{\sqrt {c \cos (a+b x)} \sqrt {d \sin (a+b x)}}dx}{2 c^2}+\frac {d}{b c \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {c \cos (a+b x)} \sqrt {c \sec (a+b x)} \sqrt {d \sin (a+b x)} \sqrt {d \csc (a+b x)} \int \frac {1}{\sqrt {c \cos (a+b x)} \sqrt {d \sin (a+b x)}}dx}{2 c^2}+\frac {d}{b c \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 3053

\(\displaystyle \frac {\sqrt {\sin (2 a+2 b x)} \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)} \int \frac {1}{\sqrt {\sin (2 a+2 b x)}}dx}{2 c^2}+\frac {d}{b c \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {\sin (2 a+2 b x)} \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)} \int \frac {1}{\sqrt {\sin (2 a+2 b x)}}dx}{2 c^2}+\frac {d}{b c \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {\sqrt {\sin (2 a+2 b x)} \operatorname {EllipticF}\left (a+b x-\frac {\pi }{4},2\right ) \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}}{2 b c^2}+\frac {d}{b c \sqrt {c \sec (a+b x)} \sqrt {d \csc (a+b x)}}\)

input
Int[Sqrt[d*Csc[a + b*x]]/(c*Sec[a + b*x])^(3/2),x]
 
output
d/(b*c*Sqrt[d*Csc[a + b*x]]*Sqrt[c*Sec[a + b*x]]) + (Sqrt[d*Csc[a + b*x]]* 
EllipticF[a - Pi/4 + b*x, 2]*Sqrt[c*Sec[a + b*x]]*Sqrt[Sin[2*a + 2*b*x]])/ 
(2*b*c^2)
 

3.3.67.3.1 Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3053
Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_ 
)]]), x_Symbol] :> Simp[Sqrt[Sin[2*e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b 
*Cos[e + f*x]])   Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f 
}, x]
 

rule 3108
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*((b_.)*sec[(e_.) + (f_.)*(x_)])^( 
n_), x_Symbol] :> Simp[(-a)*(a*Csc[e + f*x])^(m - 1)*((b*Sec[e + f*x])^(n + 
 1)/(b*f*(m + n))), x] + Simp[(n + 1)/(b^2*(m + n))   Int[(a*Csc[e + f*x])^ 
m*(b*Sec[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, - 
1] && NeQ[m + n, 0] && IntegersQ[2*m, 2*n]
 

rule 3110
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n 
_), x_Symbol] :> Simp[(a*Csc[e + f*x])^m*(b*Sec[e + f*x])^n*(a*Sin[e + f*x] 
)^m*(b*Cos[e + f*x])^n   Int[1/((a*Sin[e + f*x])^m*(b*Cos[e + f*x])^n), x], 
 x] /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[m - 1/2] && IntegerQ[n - 1/ 
2]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 
3.3.67.4 Maple [A] (verified)

Time = 8.12 (sec) , antiderivative size = 205, normalized size of antiderivative = 2.23

method result size
default \(\frac {\sqrt {2}\, \sqrt {d \csc \left (b x +a \right )}\, \left (\sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )+1}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )}\, \operatorname {EllipticF}\left (\sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}, \frac {\sqrt {2}}{2}\right )+\sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )+1}\, \sqrt {\cot \left (b x +a \right )-\csc \left (b x +a \right )}\, \operatorname {EllipticF}\left (\sqrt {1+\csc \left (b x +a \right )-\cot \left (b x +a \right )}, \frac {\sqrt {2}}{2}\right ) \sec \left (b x +a \right )+\sqrt {2}\, \sin \left (b x +a \right )\right )}{2 b \sqrt {c \sec \left (b x +a \right )}\, c}\) \(205\)

input
int((d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(3/2),x,method=_RETURNVERBOSE)
 
output
1/2/b*2^(1/2)*(d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(1/2)/c*((1+csc(b*x+a)-c 
ot(b*x+a))^(1/2)*(cot(b*x+a)-csc(b*x+a)+1)^(1/2)*(cot(b*x+a)-csc(b*x+a))^( 
1/2)*EllipticF((1+csc(b*x+a)-cot(b*x+a))^(1/2),1/2*2^(1/2))+(1+csc(b*x+a)- 
cot(b*x+a))^(1/2)*(cot(b*x+a)-csc(b*x+a)+1)^(1/2)*(cot(b*x+a)-csc(b*x+a))^ 
(1/2)*EllipticF((1+csc(b*x+a)-cot(b*x+a))^(1/2),1/2*2^(1/2))*sec(b*x+a)+2^ 
(1/2)*sin(b*x+a))
 
3.3.67.5 Fricas [F]

\[ \int \frac {\sqrt {d \csc (a+b x)}}{(c \sec (a+b x))^{3/2}} \, dx=\int { \frac {\sqrt {d \csc \left (b x + a\right )}}{\left (c \sec \left (b x + a\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(3/2),x, algorithm="fricas")
 
output
integral(sqrt(d*csc(b*x + a))*sqrt(c*sec(b*x + a))/(c^2*sec(b*x + a)^2), x 
)
 
3.3.67.6 Sympy [F]

\[ \int \frac {\sqrt {d \csc (a+b x)}}{(c \sec (a+b x))^{3/2}} \, dx=\int \frac {\sqrt {d \csc {\left (a + b x \right )}}}{\left (c \sec {\left (a + b x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate((d*csc(b*x+a))**(1/2)/(c*sec(b*x+a))**(3/2),x)
 
output
Integral(sqrt(d*csc(a + b*x))/(c*sec(a + b*x))**(3/2), x)
 
3.3.67.7 Maxima [F]

\[ \int \frac {\sqrt {d \csc (a+b x)}}{(c \sec (a+b x))^{3/2}} \, dx=\int { \frac {\sqrt {d \csc \left (b x + a\right )}}{\left (c \sec \left (b x + a\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(3/2),x, algorithm="maxima")
 
output
integrate(sqrt(d*csc(b*x + a))/(c*sec(b*x + a))^(3/2), x)
 
3.3.67.8 Giac [F]

\[ \int \frac {\sqrt {d \csc (a+b x)}}{(c \sec (a+b x))^{3/2}} \, dx=\int { \frac {\sqrt {d \csc \left (b x + a\right )}}{\left (c \sec \left (b x + a\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((d*csc(b*x+a))^(1/2)/(c*sec(b*x+a))^(3/2),x, algorithm="giac")
 
output
integrate(sqrt(d*csc(b*x + a))/(c*sec(b*x + a))^(3/2), x)
 
3.3.67.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {d \csc (a+b x)}}{(c \sec (a+b x))^{3/2}} \, dx=\int \frac {\sqrt {\frac {d}{\sin \left (a+b\,x\right )}}}{{\left (\frac {c}{\cos \left (a+b\,x\right )}\right )}^{3/2}} \,d x \]

input
int((d/sin(a + b*x))^(1/2)/(c/cos(a + b*x))^(3/2),x)
 
output
int((d/sin(a + b*x))^(1/2)/(c/cos(a + b*x))^(3/2), x)